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1 Introduction

In paper [2], we have studied the system of Diophantine equations
3zx% - 28y* = —68

and

72— 28z2 = 52,

the discussion involving clearly the well-known following notion :

Definition 1 : Let W be a nonzero integer. A set of ¥ positive integers

{@,,--.a,] is called a DW) — v—tuple if @:@;+W |5, square for all £ and J

withl=I< j=v

Looking at the coefficients of %¥* and 2* in the equations above, we can write
respectively
3=u—2 T=u+2 20 = 4

withe = 5 |

Consider for all integer ® = ® the three numbers®— %  # + 2 apd 4

If v €{0.1.2) then the set of those three numbers is not a D) —&riple ; byt if
¥ 2> 3 that set forms a D) —&riple  Thus, for all integer ¥ = 3 we shall employ
the following notations: Te =fu— 2u + 2,4uk
Qe =te— 2u + 2,4u,dk \here d is a positive integer.

Suppose that @u is a D{4) — quadruple \ith &> 4 ; then, there exist integers

X,¥%Z such that:
(11) z2=4ud + 4. y: =(u—2)d +4. zZ2 =(u+2)d+4

Eliminating @ from {11) we obtain the simultaneous Diophantine equations
&) (e —23x% - 4uy2 = —12u—8

And

(B (e + 2)x7 — Muz? — —12u + 8,



Lionel Bapoungué 3

where ® = 3 g a positive integer.
We denote by (E) the system of (Ba) and (Ea).

The objective of this paper is the generalization of [2]. More precisely, it deals with

the complete treatment of the solvability of (£,

If® = 3. we valid (€) because of the results of [5].

On the other hand, when ® is even: ¥ = 28, (8,) and (B2) become respectively

@ —1)z* — ally? = —12U—4

and

@+ 1)x*— 4z = 120 + 4

So, it is easy to see that the three numbers ¥— LT +1 and #F form a
D(1) — &riple . Therefore, we may assume that® = 5 s an integer with ® odd.
Then, we remark immediately that (€) possesses the obvious solutions

=y.2)= 3212,12)

Definition 2: The obvious solutions above are called the trivial solutions of (€).
Replacing the trivial solutions of (€) in (L1} we getd = @

Definition 3: The solution € = ® above is called the trivial extension from

Tz to .

The problem of finding the nontrivial solutions of (€) involves in an essential way
the determination of the extension € € @ d # 8 from Tz to @=; the key of
that problem is the utilization of the following conjecture claimed in [4] :

Conjecture 4 : There does not exist a D(4) — quintuple Moreover, if &5,6,4d] is a

D(4) — quadruple ithae < b < ¢ < d. then

abc + rst
d=a+b+c+T.

where %% are positive integers defined by :
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ab+4=7% ac+4=5x% bct+ 4=

Applying the second assertion of this result to @= we get @ = 4u{4u?—1)

In Section 2, we give the family of nontrivial solutions of each separate equation
of (€) (Propositions 9 and 10) by the same arguments as in the following lemma
proved in [4]:

Lemma 5: Let {@b,c} be o D(4) —triple where 0 < @ < b < ¢ and let
F,5% be positive integers defined by

ab +4=7r%ac + 4 = s%3bc + 4 = #3
. e - 3] (ﬂ m " )
There exist positive integers fasdu= and s s I=1,.,0

§ = L,.—.ja with the following properties:

0
B - (x2.%>) and (x oZ, )are respectively solutions of

(L2) ax*— cy? = 4(a— c)
and
a3 bx%®— ¢cz* = 4(b— c)

B-x].y0.1, i -zfﬂ , satisfy the following inequalities:

: —a) ’(s—zx —a)
(Le) 1<yP PR P P20,
s 1< P F“ ) k| < I—(‘ 2e—b)

B — If &3 and &2) are positive solutions of (12) and (13) respectively,

then there exist £ € { L--,%0},5 € { L,.-,jo} and integers ™™ = ® gych that

(L6) xa + yic = (z0 Ja +y:'1r)(”"_) .

wn xVb + zve = (x5 + ‘”J‘)(”r)

Assuming the solvability of (€), we introduce in Section 3 the recursive sequences
connected to the families of nontrivial solutions of (1) and (2)
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(Proposition 11). The solvability of (€} in nontrivial integers imposes clearly that

x
x = 00mod 2) Therefore, our study will be based on b 2 . Thus, in Section 4

we put up a vision of linear forms in logarithms of quadratic numbers (Theorem
13). We study in Section 5 simultaneous rational approximations (Theorem 15)

with the aid of the following result proved in [7] (see also [6]):

Proposition 6: If# = 63 i an integer, then the numbers

—2
g, = B
and
+2
G = |—-—
satisfy
maxﬂa, —p—hl, a -2 }::- 22.6u)2q 11
q q
for all integers P1»sP2»9 with 9 = ® where
. log{112u)
" log(0.197u2)

In Section 6, we describe the nontrivial solutions of (&) (Theorem 18): for # < &3 |
we bound 108X and also the positive integer ® in terms of which X is expressed by
(3.6) below (Lemma 16) ; so, we use the following results proved respectively in [1]
and [3]:

Theorem 7: For a linear form & # ® in Jogarithms of ¥ algebraic numbers

@,, -,y with rational coefficients Pas--sBx | we have:

loglAl = —18(k + 1 EE1(328)5 28 (o, )k (2,) — B’ (ay Jlog(Pk8) logh

where

b = Mah_ll._,lbtl); 8= [Q(ap--:ak): Q]

and
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2@ = %max(l(al llogal, 1)

with the standard logarithmic Weil height (@) of @

P
Lemma 8: Let M be a positive integer. Let @ the convergent of the continued

fraction expansion of @ such that @ > 6M Pyt
€= lgll— M Kql
where Il I denotes the distance from the nearest integer. If € > ® | then the inequality

0<nd-—-m+p< AB™

has no solution in the range
Agq
ﬂ?) <n< M
logB -
Next, for ® = 63 | we prove that the set @u is a D{4) — quadruple if and only if
d = #u{4u®—1) (Lemma 17). The paper is ended in Section 7 with the complete set

of integer solutions of &) (Theorem 19).

2 The families of nontrivial solutions of (E 1) and (EZ)

In this section, we give: using the arguments of lemma 5, the family of nontrivial
solutions of each separate equation of (€.

2.1 The family of (E1)

It is clear that if &¥) is a solution of (B), then so is (—%—¥). Therefore, we may
assume that (&) is positive. We prove the following proposition:

Proposition 9: Let ® = 3 be an odd integer. Then, the nontrivial solutions in pairs
of natural numbers &¥) of (&) comprise the values of the sequences

(Zm¥m)(m = 1) by setting:
@1 LT =2 + 2Ymifi = (42423 + WA —1 +Yu@—2)

Proof. Let (x,3) € 8% be a solution of equation (Ba). Then, taking
ea=u—-2 c=4u 5s=20-1)
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in lemma 5, we see that there exists a particular solution Fe¥a) of (B1) satisfying the

following inequalities:

foe—2)(u —u+2) _ [Put2
@) 1=wns< SeteS o =7

(23) Ikl = J'(Z(u—l)—Z)(ilu—u+2) = 203u + 2).

un—2

Then, by (16) we have

24) xu—2 + 294 =(xou—2 + 2yova){u—1+ Fx(u—z])m.

where ™ = 1 s an integer. But from (22) | we have in particular

B+ 2

y.s‘] = @ -2y = 3u—2

In that last inequality, ® = 3 imposes

-2y > —3u—2>—17.

<

This is only possible if ‘ E . Therefore there are only two values of ¥a:

—2m+1)
u—2

Xq =12
¥a =1 : then, from (B1) we have \

Ya =2 :hereZa =12

which is not an integer;

It follows that from {24} we have

@5 E—2 + 2y = (12fu—2 + Wi(u—1 +yuw—2) .
Taking® = Zp» ¥ = ¥e in (25), we obtain (21) =

2.2 The family of (Ez2)

It is also clear that if &%2) is a solution of (Bz2), then so is (=% 2). Therefore, we may

assume that & ) is positive. We prove also the following proposition:
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Proposition 10: Let® = 3 be an odd integer. Then, the nontrivial solutions in pairs
of natural numbers & 2) of (2) comprise the values of the sequences (ZnsZn)(m = 1)
by setting:

26 A EF2 + 22,40 = (d2Vu+2 + wE)(u+1 +Ju@+2)

Proof. Let (£.2) € N* be a solution of equation B2). Then, taking
b=1u+2 c = 4u, £t =20+1)
in lemma 5, we see that there exists a particular solution (F1sZ2) of (B2)

satisfying the following inequalities:

(+2D@e—u—2)  [e+2@Eu—2)
en 15z,5" D2 = .

(2 +1)—2)(du—u—2)  [2u(3u—2)

28) bl = | iz w1z -

Then, by {(17) we have
(29) xVu+2 + 2zvu = (xn/u+2 + Zziﬁ) (u +1+ F(u+ 2))u.

where ® = 1 g an integer. But from (27}, doing as above in proof of proposition 9,

1
we obtain 10 Therefore Za has only three possible values:
Zy =1 : then, from &2) we have *J u+ which is not an integer;

Zy = 2 :whence X2 =12

(3 + 1)

ut+2

x, = 42
|

Zy =3 : then which is not a solution because of (28) .

It follows that from (Z9) we have
218) xVuz+2 + 2248 = (12Vu +2 + wa)({u+1 +fuw +2))n-

Taking® = Zp» Z = Zp in (210) we obtain (26).
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3 Recursive sequences connected to the general solutions of (E 1) and (E 2)
In this section, we consider the trivial solutions of () and formulae (21) and
(26)
Proposition 11: Let ® = 3 be an odd integer for which equations (1) and (&2)
have the general solutions given by definition 3 and formulae (21) and (26)
respectively. Then, besides the trivial sequences a = *2 | the sequences &Zm) and
(xn) verify respectively the following recursive formulae:

xm+2) = 2u—1)z(m+1)— zgm

mxnm+2) = 2+ Pxe+1)—zm

for some integers MR = 1

Moreover, for these formulae, we have
m =n = 0,20mod 4).

In other words,
m=n=4morm=—n=4am+2
Proof: It suffices to prove @), the proof of @8 is similar. We have of course
g = X2 x, = 6u—2 or 28 + 2 3pd we see that, even if ¢ = —2 | other values

of Zx can be positive.

Next, relation (Z1) can be expressed in the form:

XVt —2 + 2yt = 2(Hu -2 +2¢ﬁ)(u—1 + Ju@m—2) ,m

or

Ymia Vil —2 + ViV = (X't —2 + 2¥méf@) (2 —1 + Ju@—2))
whence

XmaaVE—2 + Vs = (X —2 + 2ymii)(u—1 + Ju—2) ) -
But

—1D*4+u*—2u = (2u*—4u +2)-L
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Therefore

XmiaVit — 2+ 2Vl = (Xt — 2+ 2yméfiE) |22 — 1)* + 202 — 1) ’u(u—z) — ]

so that
XmiaVi — 2+ 2Vl = 20 — D(Xmsa Vil — 2+ 2V maa V) — (Xt — 2+ 2V /2)
which gives:
Zmiz = 20— 1)Zmis — Xmi
Ymiz = 20t —1}¥mis — ¥
This proves () and the first part of the proposition.
Considering relation (1) | we must find ™ such that
G (e—2)x2 — duy2 = —12u—8.
Using @, modulo 2 — 1) we have:
m 0O 1 2 3 &
I, 2 -4 -2 4 2
Here, we see that the sequence (&m) is periodic with period 4. Then from
(3.1) we obtain
B2) (e —2)x3, — 4uy: = —20(mod 2(u: —1)}.
This implies
Im =42(mod 2(x—1))
which imposes ™ = 0.20mnod 4).

We consider now relation (26) . As above, we find® such that
(33) (e +2)x2 —4uzZ = —12u+8
Using G5, modulo 2(¢ +1) we have:

rn 0 1 2 3 &
. 2 4 -2 4 2
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and we see that, the sequence (&n) is periodic with period 4. Then from

(33) we obtain

(&) (e + 2)x3 — 4uzZ = 20{mod 2(: + 1))

This implies

z, = +2{mod 2(u+1))

which imposes ® = 0.20mod %)

therefore ™ and ® are both even. In other words, we may write ® = R
=M orm =n = Mm+2 This proves the second part of the proposition and
completes the proof. ®

Remark 12 : Equations (1) and (B2) impose that X is even; if we put ® =
2% then (&) and (Bz) become respectively

(F3) (e —2)X* —uy*=—-3u—2
and
F2) (e +2)X* —uz*=-3u4+2

To simplify our study, we consider from now on Fa) and (F2).

We denote by &F) the system of equations Fa) and F2). We shall employ:

_fedu—2+24u m f{-efu—21+24u _ —ym
B3 X,,.—(—_z)(u—I +Jt_!(u—2)} —(— m)(‘lll—l @—2)) .

(3.6) x“=(c'&: (+1 +J1mr—(_' +i__zzﬁ)(u+1— @r2) .

where "o =8 are integers and €1

We set

X=X, =X,

Then, the values £=2*L correspond to ™ = ®= = ® jn (35) and (36); those

values are also called the nontrivial solutions of &).
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In the ensuing of this paper, we seek the nontrivial values of £ by methods using

linear forms in logarithms of quadratic numbers and simultaneous rational
approximations. According to the precedent proposition, we shall assume that ™ and

R are botheven=2 |
4 Linear forms in logarithms of quadratic numbers

The present section is devoted to one important theorem of linear forms.
Theorem 13: Let # =3 be an odd integer for which (Fa) and (F2) have respectively
nontrivial solutions given by (35) and (36) . Let X be a nontrivial

solution of &) for some even integers P»® =2 Then the linear form

(41) A= nloga, — mloga, + loga,
with

B+ 24+ 2fu|Vu—2
42) a=u—14+fu@—2). a=u+l+ ‘u(u—Z). as ( )

( u—2+zﬁ) et 2

satisfies
(43) 8 <A< @05z, ™.

Moreover, the integer n verifies the inequality
n
4.4) 7 < 18*lognlog(2u—1) log{77u*).

Proof. Consider (35) and (3:6) . Then (as ¥ = Xm = Xn ) we can write:

x = (T 01 ) (P w1 - D)

(o ST e Sy

Ifweput:

@5 P = (“‘ﬁ Hzﬁ)(uu +fu@En). Q= (—“E_Z_J'zzﬁ)(u—1 )
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then, that last relations give
Iu4+2

2
-1
(4.6) P+{u+sp =e+ 4 e
Since
342 3n—2
P—0= a1 P
e 4 e 18

® = 35 implies

13
2s
and plainly £ > L > 1 we must have £ > € . As we may assume that ® 2= 2 the

13 13
P—Q> Q- Pi=_ (P-QPQ

inequality ® = 3 imposes

+ 245
P> ﬁ—z‘r{s+43_5)’ > 605.
¥7
Relation (46) implies
17 17
_toar.p_~
Q>P-_Q >P—_.

Hence

342 Iu—2 17 17y 13 1
P_Q= (P

L ] 2s 2
It follows from
P—Q 1 1

0c— «— P 2—=—— x6052
P 2 2

that

0<1ogg=—log(1—% <§P"+(§P")z{§!'"(1+§ x 6052) < 0.5P 2

Since
P2 <(64V3E) .
substituting from (45) we obtain (4-1).

It remains to show inequality (44). Here, we have to apply theorem 7 with

k =3 and relations (42) . Thus, we can take 8= %b = ® and
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v 1 . 1
k(a,)= ilﬂgcl,h (@)= ilﬂﬂaz-

Denoting the conjugate of @a by @a”- we may write
. 1 1
k(e,) < ;[Iodcau+2)’&e+z)’)+logl(al.a;")] < gloa(lﬁuz(ifuﬂ)(u + 2)) < glog(77u*).

Then, by theorem 7 we have

x3* (32 x4)=* 1 1
logA > —18 x 4! > loga,iloga,-;logmu‘)
log(4)logn.
But

a =u—1+Vu?—2u> 2u—1L
Therefore, from (4-1) we deduce that
n
logn

Lemma 14: With the notations of the preceding theorem, we have:

< 1x2x 10%%0g(2u — 1) 1eg(77u*). m

4.7 0O<A=a3n>m

Proof. Suppose that ® << T ; then we have:

A = nlogae; —mloge,; + loga; < mloga; —mlega, + loga;
= —m(loge, —loge,) + loga; < loge, —loge, + logas
=loga; + log(eya;) < &,

which contradicts inequality (477 =

5. Simultaneous rational approximations

It is clear that if &%,%2) is a nontrivial positive solution of &), so is (~X,—¥%—2)
Thus, we can suppose that &3 2) is positive.

Let &.,%,2) be a nontrivial positive solution of &), Then, we may write

(F1) and (F2) respectively in the form
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-1
+2 z fut2 Z* +2 z
T X T_ﬁ) = 'x

Then, taking the absolute values in these two last equalities, we obtain re-

spectively
-—l
—2 y_ 1 —2 ¥
GD x| TweE A [y
and
—1
+2 =z 1 +2 =z
G2) ‘T‘f =uxal et ‘T*f -

Next, we prove the following theorem :

Theorem 15: Let ¥ 263 be an odd integer such that &3 2) is a nontrivial positive

solution of &F). Then &, ¥ 2) satisfies

(53) (226u)2X 2121 - max ’;Z_Z_y' ';2_2_2 < 15%2
/) X h /3 p 4
with
_ log(112w)
2= togoaroms <~ *

Proof. Taking Pa = %Pz2= Z and9=2X in (51) and (52}, by proposition 6.
we see that the solution &, ¥:2) of &F) satisfies

F—Z Fﬁz
——Z, ol i > (226u)2x 11
“® P4 “ b4

with

_ log(112w)
"~ log{0.197u%)"

It is also clear that # =63 implies 2 <1 _ This proves the first inequality of (5-3)

Let us show now the last inequality of (53) . From (52) we have



The system of Diophantine equations (u - 1)x*- 4uy*=-12u - 8 and (u + 2)x- 4uy* =-12u t@

+2 z
x X

> 63, +2>l z

u— . .
(since J = andx " " ).

Doing as above with equality (5.1) | we also obtain

_ 1 L 1 .
G4 _u?l 3u+2| Suxzﬂ 3u|+2)—2<1552
2‘1+§

1
+2 =z
FE

” X <

Gs)

From (54) and (55) | we see that

—2 ¥y +2 z
e | EETRRS < i | TR

so that {53) holds and the proof is now complete. ®

]<15x-=

6 The nontrivial solutions of (:F)

In this section, we have to examine two cases: 3 <% <63 gpdu>63

6.1 The case 3 <m < &3

In this case, we go on to prove the following lemma:

Lemma 16: Let ® be an odd integer such that 3 =% <63 With the notations and
hypotheses of theorem 13, if =2 s an even integer satisfying (43) and (44} then
n=2

Proof. Suppose that ® #2 | that is™ =4 _ Then, inequalities (43) imply, after
dividing by 10 that

0 <nl—mip< AB™

With

"But lemma 14 and the last equalities of
proposition 11 imply, since ® =3 |

n>m>=4u+2>22
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As® < 63 it follows from (44) that® < 5x 18" Thyg taking M =5x 187 i

lemma 8, we see that we have to examine 29 cases for which the second convergent
of @ with ¢ > 6M is needed only in two cases: ¥ =3 and ¥ =7 | therefore
® >3  This implies ® << 1% in which case the second step of reduction of lemma 8
with M = 13 imposes ® < 4 which contradicts the supposition that =4 =

6.2 The case ® = 63

In this case, we prove also the following lemma :

Lemma 17: Let # =63 be an odd integer. With the same notations and hypotheses
as in lemma 16, the set @x is a D(4) — quadruple if and only ifd = 4(e* — 1)
Proof. If & =4u@* — 1) then by definition 1, @x is a D{4) — quadruple
Conversely, suppose that € ¥ #u@* —1)_ Since £ is a nontrivial solution of &),
—X s also a nontrivial solution of &). Therefore, we may suppose that £ is
positive. Then, from the first relation of (1-1) we have

4X% # 16u*(u?—1) + 4,

whence & > @)

X # 2u*—1L

Then, from (36) we may write (as X = Xm = Xris positive) X = ¥n for R=2

where

e = (m)(u—l +m)n_(—1hz_—z+ zﬁ)(u—l —Yaz—zu)

2vu—2 2vu—2
Therefore we have

o> (-1 +ﬁ’—zu)u—(u—l—ﬁi—zu},l}(Zu—a)".

Then, taking the logarithms, we see that
logX > mnlog{(2u— 3).
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But from proposition 11 we have in particular ® = 4% + 2 o that
(65) logX > (4u + 2)log(2u—3).

Next, from theorem 15, we have the inequality

66) (26u) X 11 155X2 a<1

so that

X1 < 3503w,

and taking again the logarithms of this last inequality we see that

(67 )log < B0
1-2
Since

log(112w)  Ilog(0.0175u)

1-2=1- — )
log(0197u%) ~ log(0.197%)

we have

1 log{0197u?) . 2og0444)
1-2  Ilog(0.0175u)  log(0.0175u) -

Thus, relations (65) and (6.7) imply
I0g(0.444:)log(35.03u)

Ze + 1 < o a(u—3)log(001T5)"
Set
68 g 80MmIog(350)

log(2u — 3)log(0.01751)"

Then, from (68) we see that

2u—3 < 3503y, 00175 < 0.444n

so that B is decreasing. Further the inequality

Blu) = B(63) < 55

imposes #® < 27 which contradicts the supposition that # =63 =

6.3 Description of nontrivial solutions of (F)
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Theorem 18: Let ® =3 be an odd integer for which the Diophantine equations

(F2) and F2) have nontrivial solutions given respectively by (35) and (3:6)
Then, all the nontrivial integer solutions of &) are given by:
X = +(2u?—1)
y = +{2u?—-2u—2).
z = +(2u?+2u—2)
Proof. Easy calculations show that formulae above give nontrivial solutions for &F).
Conversely, let X:3:Z be nontrivial integers such that we have &), Then,

with conjecture 4, we have got € = 4u(4? —1) which yields the nontrivial

solutions of @) Thus, from relations (1-1) we get:

2= m&_m!_}_l:mz_l)z
¥y = (2u? —2u—2)? -
z2 = (2u?+2u—2)*

so that

X = +(2u?—1)
y = +(2u?—2u—2)
z = +(2u?+2u—2)

and lemmas 16 and 17 show that there is no other solution. ®

7 Complete set of solutions of (8)
Theorem 19: Let # =3 be an odd integer. Then, all the integer solutions of
(€) are given by :
x = 2, +(4u*—2)
y =424 (2u?—2u-2).
z = 32, +{(2u? +2u—2)
Proof. The trivial solutions of (€) result from definitions 2 and 3 and the

nontrivial solutions result (as ® = 2X ) from theorem 18.

Remark 20: If# = 3 | we have studied in [2] the system (&s) of equations
3x% —28y* =68 and 7x* — 282" =52  We have proved that all the solutions of



The system of Diophantine equations (u - 1)x*- 4uy*=-12u - 8 and (u + 2)x2- 4uy* =-12u %@

(£5) are given by:

x= 12,198

y=12,138.

z = 12458
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