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Abstract : Let  be an odd integer. The three numbers 

 and  have the property that the product of any two 

distinct, increased by , is a perfect square. That property allows the 

solvability of the Diophantine  quations  

and . The integers solutions of the 

system of these two equations are given by , , 

, , , . We prove 

with the aid of simultaneous rational approximations and linear forms 

in logarithms of quadratic numbers that there is no other solution. 
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1 Introduction 

In paper [2], we have studied the system of Diophantine equations 

  

and 

 

the discussion involving clearly the well-known following notion : 

Definition 1 : Let  be a nonzero integer. A set of  positive integers 

 is called a  if  is a square for all  and  

with . 

Looking at the coefficients of  and  in the equations above, we can write 

respectively 

 

with . 

Consider for all integer , the three numbers  and . 

If , then the set of those three numbers is not a ; but if 

 that set forms a . Thus, for all integer  we shall employ 

the following notations:                                                      

where d is a positive integer. 

Suppose that  is a  with ; then, there exist integers 

 such that: 

. 

Eliminating  from , we obtain the simultaneous Diophantine equations 

 

And 
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where  is a positive integer. 

We denote by  the system of  and . 

The objective of this paper is the generalization of [2]. More precisely, it deals with 

the complete treatment of the solvability of . 

If  we valid  because of the results of [5]. 

On the other hand, when  is even:  and  become respectively 

 

and 

 

So, it is easy to see that the three numbers  and  form a 

. Therefore, we may assume that  is an integer with  odd. 

Then, we remark immediately that  possesses the obvious solutions 

 

Definition 2: The obvious solutions above are called the trivial solutions of . 

Replacing the trivial solutions of  in , we get . 

Definition 3: The solution  above is called the trivial extension from 

 to . 

The problem of finding the nontrivial solutions of  involves in an essential way 

the determination of the extension , from  to ; the key of 

that problem is the utilization of the following conjecture claimed in [4] : 

Conjecture 4 : There does not exist a . Moreover, if  is a 

 with  then 

  

where  are positive integers defined by : 
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Applying the second assertion of this result to  we get . 

In Section 2, we give the family of nontrivial solutions of each separate equation 

of  (Propositions 9 and 10) by the same arguments as in the following lemma 

proved in [4]: 

Lemma 5: Let  be a  where , and let 

be positive integers defined by 

 

There exist positive integers  and   

 with the following properties: 

and  are respectively solutions of 

 

and 

 

, satisfy the following inequalities: 

 

 If  and  are positive solutions of  and   respectively, 

then there exist  and integers  such that 

 

 

Assuming the solvability of , we introduce in Section 3 the recursive sequences 

connected to the families of nontrivial solutions of  and   
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(Proposition 11). The solvability of  in nontrivial integers imposes clearly that 

. Therefore, our study will be based on  . Thus, in Section 4 

we put up a vision of linear forms in logarithms of quadratic numbers (Theorem 

13). We study in Section 5 simultaneous rational approximations (Theorem 15) 

with the aid of the following result proved in [7] (see also [6]):  

Proposition 6: If  is an integer, then the numbers 

 

and 

 

satisfy 

 

for all integers  with , where 

 

In Section 6, we describe the nontrivial solutions of  (Theorem 18): for , 

we bound  and also the positive integer  in terms of which  is expressed by 

 below (Lemma 16) ; so, we use the following results proved respectively in [1] 

and [3]: 

Theorem 7: For a linear form  in logarithms of  algebraic numbers 

 with rational coefficients , we have: 

 

where 

 

and 
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with the standard logarithmic Weil height  of . 

Lemma 8: Let  be a positive integer. Let  the convergent of the continued 

fraction expansion of  such that . Put 

 

where  denotes the distance from the nearest integer. If , then the inequality 

 

has no solution in the range 

 

Next, for , we prove that the set  is a  if and only if 

 (Lemma 17). The paper is ended in Section 7 with the complete set 

of integer solutions of  (Theorem 19). 

2 The families of nontrivial solutions of  and ( ) 

In this section, we give: using the arguments of lemma 5, the family of nontrivial 

solutions of each separate equation of . 

2.1 The family of  

It is clear that if  is a solution of , then so is . Therefore, we may 

assume that  is positive. We prove the following proposition: 

Proposition 9: Let  be an odd integer. Then, the nontrivial solutions in pairs 

of natural numbers  of  comprise the values of the sequences 

 by setting: 

. 

Proof. Let  be a solution of equation . Then, taking  

 

The system of Diophantine equations (u - 1)x2 - 4uy2 = -12u - 8 and (u + 2)x2 - 4uy2 = -12u + 8



7

in lemma 5, we see that there exists a particular solution  of  satisfying the 

following inequalities: 

 

 

Then, by  we have 

 

where  is an integer. But from , we have in particular 

 

In that last inequality,  imposes  

 

This is only possible if  . Therefore there are only two values of : 

: then, from  we have  which is not an integer; 

: here . 

It follows that from  we have 

 

Taking   in , we obtain .  

2.2 The family of  

It is also clear that if  is a solution of , then so is . Therefore, we may 

assume that  is positive. We prove also the following proposition: 
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Proposition 10: Let  be an odd integer. Then, the nontrivial solutions in pairs 

of natural numbers  of  comprise the values of the sequences  

by setting: 

. 

Proof. Let  be a solution of equation . Then, taking  

 

in lemma 5, we see that there exists a particular solution  of  

satisfying the following inequalities: 

 

 

Then, by  we have 

 

where  is an integer. But from , doing as above in proof of proposition 9, 

we obtain  . Therefore  has only three possible values: 

: then, from  we have  which is not an integer; 

: whence . 

: then  which is not a solution because of . 

It follows that from  we have 

 

Taking   in , we obtain . 
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3 Recursive sequences connected to the general solutions of  and  

In this section, we consider the trivial solutions of  and formulae  and 

. 

Proposition 11: Let  be an odd integer for which equations  and  

have the general solutions given by definition 3 and formulae  and  

respectively. Then, besides the trivial sequences , the sequences  and 

 verify respectively the following recursive formulae: 

 , 

 , 

for some integers . 

Moreover, for these formulae, we have 

 

In other words, 

 

Proof: It suffices to prove , the proof of  is similar. We have of course 

,  or  and we see that, even if , other values 

of  can be positive. 

Next, relation  can be expressed in the form: 

 

or 

 

 whence 

 

But 
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Therefore 

 

so that 

 

which gives: 

 

 

This proves  and the first part of the proposition. 

Considering relation , we must find  such that 

 

Using , modulo  we have: 

   

   

Here, we see that the sequence  is periodic with period 4. Then from 

 we obtain 

 

This implies 

 

which imposes  

We consider now relation . As above, we find  such that 

 

Using , modulo  we have: 

   

  , 
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and we see that, the sequence  is periodic with period 4. Then from 

 we obtain 

 

This implies 

 

which imposes  

therefore  and  are both even. In other words, we may write  

or . This proves the second part of the proposition and 

completes the proof.  

Remark 12 : Equations  and  impose that  is even; if we put  

, then  and  become respectively 

 

and 

 

To simplify our study, we consider from now on  and . 

We denote by  the system of equations  and . We shall employ: 

 

 

 

where  are integers and . 

We set 

 

Then, the values  correspond to  in and ; those 

values are also called the nontrivial solutions of . 
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In the ensuing of this paper, we seek the nontrivial values of  by methods using 

linear forms in logarithms of quadratic numbers and simultaneous rational 

approximations. According to the precedent proposition, we shall assume that  and 

 are both even . 

4 Linear forms in logarithms of quadratic numbers 

The present section is devoted to one important theorem of linear forms. 

Theorem 13: Let  be an odd integer for which  and  have respectively 

nontrivial solutions given by  and . Let  be a nontrivial 

solution of  for some even integers . Then the linear form 

 

with 
 

 

satisfies 

 

Moreover, the integer n verifies the inequality 

 

Proof. Consider  and . Then (as ) we can write: 
 

  

 

If we put :
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then, that last relations give 

 

Since 

 

 implies 

 

and plainly  we must have . As we may assume that  the 

inequality  imposes 

 

Relation  implies 

 

Hence 

 

It follows from 

 

that 

 

Since 

 

substituting from  we obtain . 

It remains to show inequality . Here, we have to apply theorem 7 with 

 and relations . Thus, we can take  and 
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Denoting the conjugate of  by  we may write  

 

Then, by theorem 7 we have 

 

 

But 

 

Therefore, from  we deduce that 

 

Lemma 14: With the notations of the preceding theorem, we have: 

 

Proof. Suppose that ; then we have: 

 

which contradicts inequality .  

5. Simultaneous rational approximations 

It is clear that if  is a nontrivial positive solution of , so is  

Thus, we can suppose that  is positive. 

Let  be a nontrivial positive solution of . Then, we may write 

 and  respectively in the form 

 

and 
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Then, taking the absolute values in these two last equalities, we obtain re- 

spectively 

 

and 

 

Next, we prove the following theorem : 

Theorem 15: Let  be an odd integer such that  is a nontrivial positive 

solution of . Then  satisfies 

 

with 

 

Proof. Taking  and  in  and , by proposition 6. 

we see that the solution  of  satisfies 

 

with 

 

It is also clear that  implies . This proves the first inequality of . 

Let us show now the last inequality of . From  we have  
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(since  and ). 

Doing as above with equality , we also obtain 

 

From  and , we see that 

 

so that  holds and the proof is now complete.  

6 The nontrivial solutions of  

In this section, we have to examine two cases:  and . 

6.1 The case  

In this case, we go on to prove the following lemma: 

Lemma 16: Let  be an odd integer such that . With the notations and 

hypotheses of theorem 13, if  is an even integer satisfying  and , then 

.  

Proof. Suppose that , that is . Then, inequalities  imply, after 

dividing by  that 

 

With 

But lemma 14 and the last equalities of 

proposition 11 imply, since , 
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As , it follows from  that . Thus, taking  in 

lemma 8, we see that we have to examine 29 cases for which the second convergent 

of  with  is needed only in two cases:  and , therefore 

. This implies  in which case the second step of reduction of lemma 8 

with  imposes  which contradicts the supposition that .  

6.2 The case  

In this case, we prove also the following lemma : 

Lemma 17: Let  be an odd integer. With the same notations and hypotheses 

as in lemma 16, the set  is a  if and only if . 

Proof. If , then by definition 1,  is a . 

Conversely, suppose that . Since  is a nontrivial solution of , 

 is also a nontrivial solution of . Therefore, we may suppose that  is 

positive. Then, from the first relation of  we have  

 

whence  

 

Then, from  we may write (as is positive)  for , 

where 

 

Therefore we have 

 

Then, taking the logarithms, we see that  
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But from proposition 11 we have in particular  so that 

 

Next, from theorem 15, we have the inequality 

 

so that 

 

and taking again the logarithms of this last inequality we see that 

 

Since 

 

we have 

 

Thus, relations  and  imply 

 

Set 

 

Then, from  we see that 

 

so that  is decreasing. Further the inequality 

 

imposes  which contradicts the supposition that .  

6.3 Description of nontrivial solutions of  
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Theorem 18: Let  be an odd integer for which the Diophantine equations 

 and  have nontrivial solutions given respectively by  and . 

Then, all the nontrivial integer solutions of  are given by: 

 

Proof. Easy calculations show that formulae above give nontrivial solutions for . 

Conversely, let  be nontrivial integers such that we have . Then, 

with conjecture 4, we have got  which yields the nontrivial 

solutions of . Thus, from relations  we get: 

 

so that  

 

and lemmas 16 and 17 show that there is no other solution.  

7 Complete set of solutions of  

Theorem 19: Let  be an odd integer. Then, all the integer solutions of 

 are given by :   

 

Proof. The trivial solutions of  result from definitions 2 and 3 and the 

nontrivial solutions result (as ) from theorem 18. 

Remark 20: If , we have studied in [2] the system  of equations 

 and . We have proved that all the solutions of  
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 are given by: 
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